NAM2019
  • NAM2021
    • Contacts
  • Science
    • Science Programme
    • Plenary Talks
    • Parallel Sessions
    • Special Lunches/Discussion Sessions
    • Poster Session
    • NAM Community Session
  • Social
    • Presidential Address
    • Herschel Concert
    • RAS Awards Ceremony
    • Virtual Stonehenge Tour
  • Media
  • Public Engagement
    • Public engagement opportunities
    • Public talk
    • Writing Skyscapes
  • Venue
    • Code of Conduct
    • Accessing the conference
    • Gather.town
    • NAM2021 Slack
    • About Bath
  • Monday
  • Tuesday
  • Wednesday
  • Thursday
  • Friday
  • Posters
  • NAM2021
    • Contacts
  • Science
    • Science Programme
    • Plenary Talks
    • Parallel Sessions
    • Special Lunches/Discussion Sessions
    • Poster Session
    • NAM Community Session
  • Social
    • Presidential Address
    • Herschel Concert
    • RAS Awards Ceremony
    • Virtual Stonehenge Tour
  • Media
  • Public Engagement
    • Public engagement opportunities
    • Public talk
    • Writing Skyscapes
  • Venue
    • Code of Conduct
    • Accessing the conference
    • Gather.town
    • NAM2021 Slack
    • About Bath
  • Monday
  • Tuesday
  • Wednesday
  • Thursday
  • Friday
  • Posters

Friday

Schedule

id
date time
PM2
17:05
Abstract
Tree-ring structure of Galactic bar resonance
Friday

Abstract details

id
Galaxy dynamics and evolution in the Gaia era
Date Submitted
2021-04-23 15:01:00
Rimpei
Chiba
Rudolf Peierls Centre for Theoretical Physics, University of Oxford
Contributed
Tree-ring structure of Galactic bar resonance
R.Chiba (Rudolf Peierls Centre for Theoretical Physics, University of Oxford), R.Schönrich (Mullard Space Science Laboratory, University College London)
Galaxy models have long predicted that galactic bars slow down by losing angular momentum to their postulated dark haloes. When the bar slows down, resonance sweeps radially outwards through the galactic disc while growing in volume, thereby sequentially capturing new stars at its surface/separatrix. Since trapped stars conserve their action of libration, which measures the relative distance to the resonance centre, the order of capturing is preserved: the surface of the resonance is dominated by stars captured recently at large radius, while the core of the resonance is occupied by stars trapped early at small radius. The slow-down of the bar thus results in a rising mean metallicity of trapped stars from the surface towards the centre of the resonance as the Galaxy’s metallicity declines towards large radii. This argument, when applied to Solar neighbourhood stars, allows a novel precision measurement of the bar’s current pattern speed Ω_p = 35.5 ± 0.8 km/s/kpc, placing the corotation radius at R_CR = 6.6 ± 0.2 kpc. With this pattern speed, the corotation resonance precisely fits the Hercules stream in agreement with kinematics. Beyond corroborating the slow bar theory, this measurement manifests the deceleration of the bar of more than 24% since its formation and thus the angular momentum transfer to the dark halo by dynamical friction. The measurement therefore supports the existence of a standard dark-matter halo rather than alternative models of gravity.

NAM 2020 Logo AWRAS Logo

 

Bath University LogoUKRI STFC new

All attendees are expected to show respect and courtesy to other attendees and staff, and to adhere to the NAM Code of Conduct.

© 2022 Royal Astronomical Society

Login