NAM2019
  • NAM2021
    • Contacts
  • Science
    • Science Programme
    • Plenary Talks
    • Parallel Sessions
    • Special Lunches/Discussion Sessions
    • Poster Session
    • NAM Community Session
  • Social
    • Presidential Address
    • Herschel Concert
    • RAS Awards Ceremony
    • Virtual Stonehenge Tour
  • Media
  • Public Engagement
    • Public engagement opportunities
    • Public talk
    • Writing Skyscapes
  • Venue
    • Code of Conduct
    • Accessing the conference
    • Gather.town
    • NAM2021 Slack
    • About Bath
  • Monday
  • Tuesday
  • Wednesday
  • Thursday
  • Friday
  • Posters
  • NAM2021
    • Contacts
  • Science
    • Science Programme
    • Plenary Talks
    • Parallel Sessions
    • Special Lunches/Discussion Sessions
    • Poster Session
    • NAM Community Session
  • Social
    • Presidential Address
    • Herschel Concert
    • RAS Awards Ceremony
    • Virtual Stonehenge Tour
  • Media
  • Public Engagement
    • Public engagement opportunities
    • Public talk
    • Writing Skyscapes
  • Venue
    • Code of Conduct
    • Accessing the conference
    • Gather.town
    • NAM2021 Slack
    • About Bath
  • Monday
  • Tuesday
  • Wednesday
  • Thursday
  • Friday
  • Posters

Monday

Schedule

id
date time
PM1
13:15
Abstract
The effects of driving time scales on energy release in the solar corona
Monday

Abstract details

id
The effects of driving time scales on energy release in the solar corona
Date Submitted
2021-04-30 12:05:00
Thomas
Howson
University of St Andrews
Solar Physics Open Session
Contributed
T. A. Howson, I. De Moortel, L. E. Fyfe
Since the discovery of the hot solar corona, a wide variety of mechanisms have been proposed for maintaining the high temperatures. The majority of these models fall into one of two broad categories, either AC (alternating current) or DC (direct current) heating. The distinction between these two groups arises from the characteristic time scales of the photospheric motions which are the source of the required energy. AC models are associated with short time scale driving and DC models with long time scales.

Despite decades of investigation, debate continues about the relative importance of AC and DC heating in different regions of the corona. In either case, the rate of energy injection is sensitive to both the imposed velocity profile (driver) and the form of the atmospheric magnetic field. The interaction of the driver with the coronal field has important consequences for energy budgets. With this in mind, I will present the results of a series of numerical simulations of coronal heating in general settings. By modifying the characteristics of an imposed, random driver, I will compare the expected energy release rates and the atmospheric response for AC and DC driving.

NAM 2020 Logo AWRAS Logo

 

Bath University LogoUKRI STFC new

All attendees are expected to show respect and courtesy to other attendees and staff, and to adhere to the NAM Code of Conduct.

© 2023 Royal Astronomical Society

Login