NAM2019
  • NAM2021
    • Contacts
  • Science
    • Science Programme
    • Plenary Talks
    • Parallel Sessions
    • Special Lunches/Discussion Sessions
    • Poster Session
    • NAM Community Session
  • Social
    • Presidential Address
    • Herschel Concert
    • RAS Awards Ceremony
    • Virtual Stonehenge Tour
  • Media
  • Public Engagement
    • Public engagement opportunities
    • Public talk
    • Writing Skyscapes
  • Venue
    • Code of Conduct
    • Accessing the conference
    • Gather.town
    • NAM2021 Slack
    • About Bath
  • Monday
  • Tuesday
  • Wednesday
  • Thursday
  • Friday
  • Posters
  • NAM2021
    • Contacts
  • Science
    • Science Programme
    • Plenary Talks
    • Parallel Sessions
    • Special Lunches/Discussion Sessions
    • Poster Session
    • NAM Community Session
  • Social
    • Presidential Address
    • Herschel Concert
    • RAS Awards Ceremony
    • Virtual Stonehenge Tour
  • Media
  • Public Engagement
    • Public engagement opportunities
    • Public talk
    • Writing Skyscapes
  • Venue
    • Code of Conduct
    • Accessing the conference
    • Gather.town
    • NAM2021 Slack
    • About Bath
  • Monday
  • Tuesday
  • Wednesday
  • Thursday
  • Friday
  • Posters

Poster

id
Unveiling the origin of steep decay in γ-ray bursts
Transient Astrophysics
Samuele
Ronchini
Date Submitted
2021-04-29 00:00:00
Gran Sasso Science Institute
γ-ray bursts (GRBs) are transient cataclysmic events, whose role became central in the new multi-messenger era. In the present work I propose a novel investigation of the GRB emission mechanism, via time-resolved spectral analysis of the X-ray tails of bright GRB pulses observed with the XRT instrument onboard the Neil Gehrels Swift Observatory, discovering a unique relation between the spectral index and the flux. The investigation of the spectral evolution during the GRB tail is an ideal diagnostic to understand the connection between the emission processes, the cooling processes and the outflow environment. I thoroughly discuss possible interpretations in relation to current available models and I show the incompatibility of our results with the standard high latitude emission. Our results for the first time strongly suggest evidence of adiabatic cooling of the emitting particles, shedding light on fundamental physics of relativistic outflows in GRBs. Finally I discuss the crucial role of future wide-field X-ray telescopes, such as the mission concept Theseus, for the characterisation of the GRB tail emission, highlighting also its importance in the multi-messenger context.

NAM 2020 Logo AWRAS Logo

 

Bath University LogoUKRI STFC new

All attendees are expected to show respect and courtesy to other attendees and staff, and to adhere to the NAM Code of Conduct.

© 2022 Royal Astronomical Society

Login