NAM2019
  • NAM2021
    • Contacts
  • Science
    • Science Programme
    • Plenary Talks
    • Parallel Sessions
    • Special Lunches/Discussion Sessions
    • Poster Session
    • NAM Community Session
  • Social
    • Presidential Address
    • Herschel Concert
    • RAS Awards Ceremony
    • Virtual Stonehenge Tour
  • Media
  • Public Engagement
    • Public engagement opportunities
    • Public talk
    • Writing Skyscapes
  • Venue
    • Code of Conduct
    • Accessing the conference
    • Gather.town
    • NAM2021 Slack
    • About Bath
  • Monday
  • Tuesday
  • Wednesday
  • Thursday
  • Friday
  • Posters
  • NAM2021
    • Contacts
  • Science
    • Science Programme
    • Plenary Talks
    • Parallel Sessions
    • Special Lunches/Discussion Sessions
    • Poster Session
    • NAM Community Session
  • Social
    • Presidential Address
    • Herschel Concert
    • RAS Awards Ceremony
    • Virtual Stonehenge Tour
  • Media
  • Public Engagement
    • Public engagement opportunities
    • Public talk
    • Writing Skyscapes
  • Venue
    • Code of Conduct
    • Accessing the conference
    • Gather.town
    • NAM2021 Slack
    • About Bath
  • Monday
  • Tuesday
  • Wednesday
  • Thursday
  • Friday
  • Posters

Poster

id
PyAutoFit: A Classy Probabilistic Programming Language For Cosmology and Cancer
Stat Methods in Big Data
James
Nightingale
Date Submitted
2021-04-29 00:00:00
Durham University
A major trend in astronomy and healthcare is the rapid adoption of Bayesian statistics for data analysis and modeling. With modern data-sets growing by orders of magnitude in size, the focus is now on developing methods capable of applying contemporary inference techniques to extremely large datasets. To this aim, I present PyAutoFit (https://github.com/rhayes777/PyAutoFit), an open-source probabilistic programming language for automated Bayesian inference.

I will present PyAutoFit’s multi-level modeling framework, which allows a user to compose and fit hierarchical models to extremely large datasets. In an Astronomy setting, I will show how a multi-level model can constrain the dark matter particle, by modeling individual images of strong lens galaxies at the lowest level and the Universe’s cosmological parameters at the top. Next, I will describe a multi-level model of cancer treatment we are building with the healthcare company Roche, where the inner components are how specific genetic or epigenetic profiles of cancers respond to treatments and the higher levels represent tumour dynamics and patient outcomes. Finally, I will discuss how this framework can overcome a major challenge for both Astronomy and healthcare datasets: missing data.

NAM 2020 Logo AWRAS Logo

 

Bath University LogoUKRI STFC new

All attendees are expected to show respect and courtesy to other attendees and staff, and to adhere to the NAM Code of Conduct.

© 2022 Royal Astronomical Society

Login