NAM2019
  • NAM2021
    • Contacts
  • Science
    • Science Programme
    • Plenary Talks
    • Parallel Sessions
    • Special Lunches/Discussion Sessions
    • Poster Session
    • NAM Community Session
  • Social
    • Presidential Address
    • Herschel Concert
    • RAS Awards Ceremony
    • Virtual Stonehenge Tour
  • Media
  • Public Engagement
    • Public engagement opportunities
    • Public talk
    • Writing Skyscapes
  • Venue
    • Code of Conduct
    • Accessing the conference
    • Gather.town
    • NAM2021 Slack
    • About Bath
  • NAM2021
    • Contacts
  • Science
    • Science Programme
    • Plenary Talks
    • Parallel Sessions
    • Special Lunches/Discussion Sessions
    • Poster Session
    • NAM Community Session
  • Social
    • Presidential Address
    • Herschel Concert
    • RAS Awards Ceremony
    • Virtual Stonehenge Tour
  • Media
  • Public Engagement
    • Public engagement opportunities
    • Public talk
    • Writing Skyscapes
  • Venue
    • Code of Conduct
    • Accessing the conference
    • Gather.town
    • NAM2021 Slack
    • About Bath

Poster

id
Revisiting Taylor relaxation
Coronal Dynamics, Heating
Anthony
Yeates
Date Submitted
2021-04-29 00:00:00
Durham University
A.R. Yeates (Durham University), A.J.B. Russell (University of Dundee), G. Hornig (University of Dundee)
Turbulent magnetic relaxation is an important candidate mechanism for coronal heating and some types of solar flare. By developing turbulence that reconnects the magnetic field throughout a large volume, magnetic fields can spontaneously self-organize into simpler lower-energy configurations. We are using resistive MHD simulations to probe this relaxation process, in particular to test whether a linear force-free equilibrium is reached. Such an end state would be predicted if one assumes the classic Taylor hypothesis: that the only constraints on the relaxation come from conservation of total magnetic flux and helicity. In fact, a linear force-free state is not reached in our simulations, despite the conservation of these total quantities. Instead, the end state is better characterised as a state of (locally) uniform field-line helicity.

NAM 2020 Logo AWRAS Logo

 

Bath University LogoUKRI STFC new

All attendees are expected to show respect and courtesy to other attendees and staff, and to adhere to the NAM Code of Conduct.

© 2023 Royal Astronomical Society

Login