A.R. Yeates (Durham University), A.J.B. Russell (University of Dundee), G. Hornig (University of Dundee)
Turbulent magnetic relaxation is an important candidate mechanism for coronal heating and some types of solar flare. By developing turbulence that reconnects the magnetic field throughout a large volume, magnetic fields can spontaneously self-organize into simpler lower-energy configurations. We are using resistive MHD simulations to probe this relaxation process, in particular to test whether a linear force-free equilibrium is reached. Such an end state would be predicted if one assumes the classic Taylor hypothesis: that the only constraints on the relaxation come from conservation of total magnetic flux and helicity. In fact, a linear force-free state is not reached in our simulations, despite the conservation of these total quantities. Instead, the end state is better characterised as a state of (locally) uniform field-line helicity.
All attendees are expected to show respect and courtesy to other attendees and staff, and to adhere to the NAM Code of Conduct.