NAM2019
  • NAM2021
    • Contacts
  • Science
    • Science Programme
    • Plenary Talks
    • Parallel Sessions
    • Special Lunches/Discussion Sessions
    • Poster Session
    • NAM Community Session
  • Social
    • Presidential Address
    • Herschel Concert
    • RAS Awards Ceremony
    • Virtual Stonehenge Tour
  • Media
  • Public Engagement
    • Public engagement opportunities
    • Public talk
    • Writing Skyscapes
  • Venue
    • Code of Conduct
    • Accessing the conference
    • Gather.town
    • NAM2021 Slack
    • About Bath
  • Monday
  • Tuesday
  • Wednesday
  • Thursday
  • Friday
  • Posters
  • NAM2021
    • Contacts
  • Science
    • Science Programme
    • Plenary Talks
    • Parallel Sessions
    • Special Lunches/Discussion Sessions
    • Poster Session
    • NAM Community Session
  • Social
    • Presidential Address
    • Herschel Concert
    • RAS Awards Ceremony
    • Virtual Stonehenge Tour
  • Media
  • Public Engagement
    • Public engagement opportunities
    • Public talk
    • Writing Skyscapes
  • Venue
    • Code of Conduct
    • Accessing the conference
    • Gather.town
    • NAM2021 Slack
    • About Bath
  • Monday
  • Tuesday
  • Wednesday
  • Thursday
  • Friday
  • Posters

Thursday

Schedule

id
date time
PM2
16:30
Abstract
Peeking inside the Black Box: Interpreting Deep Learning Models for Exoplanet Atmospheric Retrievals
Thursday

Abstract details

id
Peeking inside the Black Box: Interpreting Deep Learning Models for Exoplanet Atmospheric Retrievals
Date Submitted
2021-04-30 10:07:00
Kai Hou
Yip
UCL
Machine Learning Applications in Astronomy
Contributed
Kai Hou Yip (UCL), Quentin Changeat (UCL), Nikolaos Nikolaou (UCL), Mario Morvan (UCL), Billy Edwards (UCL), Ingo P. Waldmann (UCL), Giovanna Tinetti (UCL)
Deep learning algorithms are growing in popularity in the field of exoplanetary science due to their ability to model highly non-linear relations and solve interesting problems in a data-driven manner. Several works have attempted to perform fast retrievals of atmospheric parameters with the use of machine learning algorithms like deep neural networks (DNNs). Yet, despite their high predictive power, DNNs are also infamous for being 'black boxes'. It is their apparent lack of explainability that makes the astrophysics community reluctant to adopt them. What are their predictions based on? How confident should we be in them? When are they wrong and how wrong can they be? In this work, we present a number of general evaluation methodologies that can be applied to any trained model and answer questions like these. In particular, we train three different popular DNN architectures to retrieve atmospheric parameters from exoplanet spectra and show that all three achieve good predictive performance. We then present an extensive analysis of the predictions of DNNs, which can inform us - among other things - of the credibility limits for atmospheric parameters for a given instrument and model. Finally, we perform a perturbation-based sensitivity analysis to identify to which features of the spectrum the outcome of the retrieval is most sensitive. We conclude that for different molecules, the wavelength ranges to which the DNN's predictions are most sensitive, indeed coincide with their characteristic absorption regions. The methodologies presented in this work help to improve the evaluation of DNNs and to grant interpretability to their predictions.

NAM 2020 Logo AWRAS Logo

 

Bath University LogoUKRI STFC new

All attendees are expected to show respect and courtesy to other attendees and staff, and to adhere to the NAM Code of Conduct.

© 2022 Royal Astronomical Society

Login