NAM2019
  • NAM2021
    • Contacts
  • Science
    • Science Programme
    • Plenary Talks
    • Parallel Sessions
    • Special Lunches/Discussion Sessions
    • Poster Session
    • NAM Community Session
  • Social
    • Presidential Address
    • Herschel Concert
    • RAS Awards Ceremony
    • Virtual Stonehenge Tour
  • Media
  • Public Engagement
    • Public engagement opportunities
    • Public talk
    • Writing Skyscapes
  • Venue
    • Code of Conduct
    • Accessing the conference
    • Gather.town
    • NAM2021 Slack
    • About Bath
  • Monday
  • Tuesday
  • Wednesday
  • Thursday
  • Friday
  • Posters
  • NAM2021
    • Contacts
  • Science
    • Science Programme
    • Plenary Talks
    • Parallel Sessions
    • Special Lunches/Discussion Sessions
    • Poster Session
    • NAM Community Session
  • Social
    • Presidential Address
    • Herschel Concert
    • RAS Awards Ceremony
    • Virtual Stonehenge Tour
  • Media
  • Public Engagement
    • Public engagement opportunities
    • Public talk
    • Writing Skyscapes
  • Venue
    • Code of Conduct
    • Accessing the conference
    • Gather.town
    • NAM2021 Slack
    • About Bath
  • Monday
  • Tuesday
  • Wednesday
  • Thursday
  • Friday
  • Posters

Wednesday

Schedule

id
date time
PM2
15:50
Abstract
Azimuthal field signatures associated with magnetosphere-ionosphere coupling in the Jovian magnetosphere: Comparison between Juno observations and theoretical modelling
Wednesday

Abstract details

id
Azimuthal field signatures associated with magnetosphere-ionosphere coupling in the Jovian magnetosphere: Comparison between Juno observations and theoretical modelling
Date Submitted
2021-04-29 14:59:00
Aneesah
Kamran
University of Leicester
Magnetospheres of the Outer Planets
Contributed
A. Kamran (University of Leicester), E. J. Bunce (University of Leicester), S. W. H. Cowley (University of Leicester), J. D. Nichols (University of Leicester), G. Provan (University of Leicester)
We present a comparison of magnetic field data collected by the NASA Juno spacecraft, with the magnetosphere-ionosphere (MI) coupling model for the Jovian system developed by the University of Leicester. We study the magnetic field of Jupiter, in the Northern Hemisphere, for Perijoves 1-13. By virtue of the offset of the magnetic field to the rotation axis and the subsequent "wobble" of the Juno trajectory in magnetic coordinates, these northern hemisphere portions of PJs 1-13 see the spacecraft traversing magnetic field lines connecting to the inner, middle, outer and tail regions of the magnetosphere. As such, even away from the close Perijove period, the observations contain evidence of the expected magnetic field perturbations linked to field-aligned currents associated with this fundamental MI coupling. In this study, therefore, we focus on investigating the nature of the field-aligned current signatures evident in the residual azimuthal field (having subtracted the Connerney et al 2018 JRM09 internal magnetic field model) along the magnetic field lines outside of the close periapsides. We map the residual azimuthal field signatures into the ionosphere, and calculate the corresponding ionospheric Pedersen current on an orbit by orbit basis. We compare the magnitude and distribution of these field-aligned current signatures to those expected from the Leicester model, and consider the observed orbit-by-orbit variation as a function of ionospheric colatitude and longitude. We deduce estimates for the field-aligned current densities on auroral field lines for each observation using the Pedersen currents and their distribution in co-latitude, and compare to the previous work of Kotsiaros et al [2019]. We discuss possible reasons for the variations we see, and present the next steps of our broader analysis.

NAM 2020 Logo AWRAS Logo

 

Bath University LogoUKRI STFC new

All attendees are expected to show respect and courtesy to other attendees and staff, and to adhere to the NAM Code of Conduct.

© 2022 Royal Astronomical Society

Login